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1. I n t r o d u c t i o n  

It is well known that F(k), the principal congruence subgroup of prime level k 

is torsion free and has finite index in the modular group F. The group F 

PSL(2, Z) is generated by the motions* A: z ~ - 1 / z  and B: z ~-* z + 1 and acts 

as a group of complex analytic isomorphisms (MSbius transformations) on the 

upper half plane H 2 . The quotient group F/F(k)  is the full automorphism group 

of the surface of finite analytic type H2/F(k). Let p = p(k) be the genus of this 

surface and n = n(k)  the number of punctures on it. It is well known (see for 

example [2], Chapter I) that 

p(k) = 0 for k = 2 

and 

while 

and 

p(k)=l+ (k~.2 _ 1 ) ( k -  6) for k > 2, 
24 

n ( k ) = 3 f o r k = 2  

k 2 - 1 
n(k) = 2 for k > 2. 

The automorphism group must permute the n(k)  punctures and this suggests that 

one should view r / r ( k )  as a subgroup of (represented on) Sn(k), the permutation 

group on n elements. One of our aims is to study this representation, and its 

relation to function theory (involving mostly theta constants) for the Riemann 

surfaces defined by the principal congruence subgroups. 

In this introduction, we review the mostly known theory for the case k = 2 

in order to motivate our subsequent presentation. It is interesting that  even in 

this classical case we seem to obtain some new results. The basic ideas are not 

new. We define an important equivalence relation on R 2. For reasons that will 

become clear shortly we consider vectors in R 2 to be theta characteristics. 

Two characteristics 

* When we need to lift these elements of PSL(2,Z) to SL(2,Z), we will identify B 
with the matrix [~ tl] and A with [0 ol] .  
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are called e q u i v a l e n t  provided their sum or difference belongs to 2Z 2. We denote 

this equivalence by the symbol - . *  The quotient of R 2 by this equivalence - 

(the space of c h a r a c t e r i s t i c  c lasses)  can also be viewed as the orbit space of 

R 2 by the group of motions generated by the three transformations 

ix] ix] ix] ix+2] ix] i x ]  b---t ~ I..-b ~ a l l d  F.--4 ° 
y - y  y y y y + 2  

Using the usual identification of R 2 with C, we see that the space of character- 

istic classes can be identified with the Riemann surface (orbifold) of signature 

(0, 4; 2 ,2 ,2 ,2)  corresponding to the elementary group generated by z ~ - z ,  

z H z + 2 and z H z + 2z. See [1]; p. 227. We define a right action of SL(2, Z) 

on R 2 (viewed as theta  characteristics). For the unimodular matr ix  

and the characteristic 

[ab] 7 =  c d C SL(2,7.) 

X = el E R 2, 

we define the characteristic X0' by the formula 

ae+ee I - a c  ] 
be + de' + bd " 

This does not define a group action of SL(2, Z) on characteristics. It does however 

define a (right) group action of PSL(2, 7.) on characteristic classes. W e  will also 

need to select finite sets of characteristic classes that are fixed pointwise and/or  

permuted by the modular  group and its principal congruence subgroups. See §3 

and §9. 

Consider now the set of characteristic classes represented by vectors [ r~//22 ] 

with m and rn I integers. It is easy (consult §3, where we consider a similar 

situation: prime k > 2) to see that there are precisely ten such points, four of 

which axe points with integer coordinates: 

0 111] [01[0 1 
* We will also use this symbol for the usual congruences involving integers (modulo 

a prime). This abuse of symbols should not cause any confusion. 
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There are six additional points in this set: 

The group r(2) is generated by the motions 

Z 
B2:z~z+2 ,  A o B - 2 o A : z ~  

2z+  1 

which we denote by S and W, respectively. Each of these (and hence the group 

F(2)) fixes the four characteristic classes with integer entries and permutes the 

other six. Each element of F fixes [11 ] and permutes the other three integral 

characteristic classes. It therefore follows that we have a homomorphism r/ of 

F into the permutation group on three elements. In order to use the usual 

cycle notation for permutations, we identify characteristic classes with integers 

as follows: 

Using the generators of F introdueed above, we find that B induces the per- 

mutation, written in cycle notation, (1 2) and A induces the permutation (2 3). 

These two permutations generate the full permutation group ,93. Since, as we 

have already mentioned, the subgroup 1"(2) is the kernel of the homomorphism 

7, we get the well known result that I'/1`(2) is isomorphic to • .  

Let us consider next the action of 1`(2) on the set Y consisting of the six 

additional characteristic classes we have described above. Let us denote them (in 

analogy to what we did to integral classes) by: 

I °] ['] I'] ['] ['] , -~1, 2 - 2 ,  ~ - 3 ,  a ~ - ~ 4 , ,  ~ 5 ,  2 " 6 .  
0 ~ ~ ~ 1 

We find that S induces thc permutation (2 6)(3 4) and that W induces the 

permutation (1 5)(2 6). These generate the Klein 4-group, Z2 ~ Z2. 

The quotient Y modulo the Klein 4-group consists of the three orbits 

[1,i,5,51, [2,2,6,6], and [3,3,4,4] 

(we have written each element according to its multiplicity). The group F acts on 

these orbits: B fixes the first orbit and permutes the second and third, while A 

fixes the third and permutes the first and second. If we now compare the actions 
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of r on these orbits and the action of I' on the integral characteristic classes, it 

is clear that we should associate 

[0] 
the characteristic class of 0 

and 

2, 6, 6], 
1 L / 

1 ] [1, 1, 5, 5]. 
1 

the characteristic class of 0 with the orbit 

The above is a special case of a phenomenon which we shall investigate also for 

the case of k = 3 (see §10). The study of the general case (k > 3) is deferred to 

a subsequent paper. 

With the above association, the action of F on the orbits is the same as the 

action of F on the three even integer characteristics. The orbits give a pairing of 

the six theta characteristics and ultimately yield the equations (see §9) 

0 0 0 2 [ 0 ] 0 [ 0  1 

[1] 
and ~ ~ 1 

1 0 ]  2 

(The fourth power of the above ratios is constant, 1/16.) 

It is known that It2/I'(2) is a three times punctured sphere and that the 

function 
1 

04 [ 0 ] (O , r )  

f :  T~"-~ 
0 

04 [ 0 ] ( 0 ' r )  

is holomorphie on H 2, automorphie with respect to F(2) and maps H z onto the 

Riemann sphere less the three points 0, 1, oe. In fact, f is a holomorphie 

universal cover of C - {0, 1}. There are many ways to obtain this result. The 

one relevant to us and the one we shall generalize (to some extent in this paper 



92 H.M. FARKAS AND I. KRA Isr. J. Math. 

and more in subsequent work) is the following. It can be shown that for 7 E F(2), 

each of the three even integral theta constants (that is, e and e' are each zero or 

one and ee' = 0) satisfy the relation 

(for all r E H2; where the choice of sign depends only on the motion 7) so that 

f projects to a meromorphic (perhaps multivalued) function F on the Riemann 

surface ~ / F ( 2 ) ,  a thrice punctured sphere. The function f is holomorphic and 

non-zero on I-I s and has a well defined limit as r E H 2 tends to any r E QU {oo} 

through a cusped region belonging to r. Easy calculations (see §8) show that 

f (oo)  = O, f(O) = 1, f (1)  = oo. 

It is a simple exercise to show that the projection of each of the fourth powers of 

the three classical theta constants to I-I2/F(2) (a Prym differential on the thrice 

punctured sphere) has simple poles at two of the punctures and is bounded at 

the third. Further, distinct theta characteristics lead to differentials with distinct 

sets of poles. The quotient of two of these therefore gives rise to an analytic 

homeomorphism of H2/F(2) onto the sphere punctured at the points 0, oo and a 

third point. We already know that this third point must be 1. (We conclude that 

F is single valued because a multivalued function must have more complicated 

singularities than those possessed by F.)  It follows that 

a fact which is well known but not obvious. 

In this paper we shall show how to extend many of the results discussed above 

to the other principal subgroups of the modular group with particular attention 

to the cases k = 3 and 5. 

This paper lays the foundation for continuing work. Much of the material on 

the combinatorics of punctures and characteristic classes (most of the material 

of sections 2 through 6) is not needed for the theory in the rest of this paper. It 

will be used in subsequent papers. We thank the referee for pointing out some 

applications of our work on cusp forms (in particular, of Theorem 3) to number 

theory (the growth as n ~ c¢ of the number of solutions to Q ( z l , . . . ,  zsk) = n, 
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where Q is a quadratic form in 8k variables that depends on the characteristic 

m, /kJ/which we will present in a short independent note. 

2. The quotient surface H2/r(k) 

As remarked in the introduction the quotient ~/r(2) is a thrice punctured 
(k2-1)(k-e) (k~l)~ It sphere while for a prime k > 2, ~/I'(k) is of type (1 + 24 , 2 /" 

is easily seen that oo, 0, and 1 are a (maximal) set of inequivalent (parabolic) 

fixed points for r(2). According to Chapter I of [5], for the odd prime k, one 
obtains a maximal set Q of inequivalent parabolic fixed points by following the 

recipe given below. Identify a/b 6 Q U {co} with the vector 

(as usual identify a/O, a # 0, with co). Consider only those pairs a and b of 

relatively prime integers. Infinity is a parabolic fixed point of the group r (k) .  

We use it as one of our parabolic fixed points. A cusp x 6 R is r(k)-equivalent 

to co if and only if z = a/b 6 Q with a = -t-1 mod k and b # 0, b = 0 mod k. 

Lot x  u sot o, [;] 7, relatively 
prime. The points of X determine all the cusps for the group F(k). The vectors 

z = Y and y, 

in X correspond to the same puncture (are F(k)-equivalent cusps) if and only 

if z' = +z  rood k. A set of representatives for this equivalence relation on X 

produces Q. A convenient list for the points is provided by the following table 

consisting of (k + 3)/2 rows. The first row consists of the vector [~]. The second 

row consists of the vectors [~], i = 0, 1, . . . ,  k - 1. For j = 3, . . . ,  (k + 1)/2, 

[m'] who o or,_-l, the j - th  row consists of k vectors of the form j-1 "", 

an integer relatively prime to j - 1 and - i rood k. (For example, the m l  in the 

third row, assuming k > 3, are 

1, k + 2 ,  3, k + 4 ,  5, k + 6 ,  . . . ,  k - 2 ,  2 k - 1 ,  k.) 

The last row consists of the ( k - 3 ) / 2  vectors ['~] with m 6 Z, 2 < m < ( k - 1 ) / 2 .  

It is clear the above list produces 1 + t~-!k + k-32 = k2-12 inequivalent parabolic 

fixed points. We proceed to another list of such points that will be useful later. 
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This new list (to be called the list o f  p u n c t u r e s )  will consist of k + 1 rows; each 

row will contain (k - 1)/2 entries. The first row of this new list is 

1 

' " ' ° '  k " 

The above row is the complete set of representatives of the punctures on H 2 / r ( k )  

that  are fixed by the automorphism, B, of this surface induced by the MSbius 

t ransformation B: z ~ z + 1. First, it is clear that  each of these punctures is 

fixed by Conversely, if the puncture correspon ng to the vector [;] with 

y ~ 0 is fixed by /} ,  then 

It follows that  y = km for some nonzero m E Z. Without  loss of generality 

m = 1. It  follows that  we may also assume that  1 < x < (k - 1)/2. We have 

shown t h a t / ~  fixes precisely (k - 1)/2 of the n(k)  punctures on l l2/F(k) .  

The second row of our new list is the image of the first row under the motion 

A: z ~ - 1 / z .  For j = 3, . . . ,  k + 1, the j - t h  row is the image of the (j - 1)-st row 

under the map  B. We see that  the elements of the j - t h  row (j = 2, 3, . . . ,  k + 1) 

are the cusps 

1 ' 2 ' 3 , " "  , k-1 • 
2 

It  is routine (but a bit tedious) to establish one-to-one correspondences between 

the punctures represented in the two lists. We should remark that  by what we 

already established, it is obvious that  the punctures represented by the cusps in 

the j - t h  row (j = 2, . . . ,  k + 1) of our second list are precisely the punctures 

on H2/F(k)  fixed by the automorphism of this surface induced by the MSbius 

transformation B i -2  o A o B o A -1 o B ~-.~ (a parabolic motion with fixed point 

at j - 2 ) .  

Since/~ is of prime order k, the branch number at x e S = H2/F(k)  of the 

natural  projection S ~ S~ < / }  > is k - 1 at each fixed point of B. If such a fixed 

point existed we would be able to find a lift C of/~ to H 2 which would be elliptic 

of order k. This motion C would be an element of F; which would imply that  

k = 2 or 3. When k = 2 or 3, the surface H2/F(k)  is a sphere; which implies that  

/} has precisely two fixed points. Exactly one of the punctures is fixed. Hence 
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one interior point must also be fixed. We thus conclude by Riemann-Hurwitz 

that  for prime k > 3, the genus of S/< J3 > is 

(k - 1)(k - 11) 
1 +  

24 
In particular, for k = 5 and 7 the quotient is a sphere (also, of course, for k = 2 

and 3). 
It is a consequence of the above that the Riemann surface S factored by the 

group of automorphisms generated by B has precisely k - 1 punctures. It is 

clearly the Riemarm surface obtained by factoring the upper half plane by the 

group F(k) with the motion B adjoined. 

For example, if k = 5, the surface S is a 12 times punctured sphere and the 

quotient is a 4 times punctured sphere. We will show in the sequel that an explicit 

map of the one to the other is given by the fifth powers of a quotient of theta 

constants. Now any such pair which gives a function of order five will do but 

there is a semi-canonical choice, the quotient 

I - ________i__~ 0 [1] 
g 

which has the advantage of being invariant under r H r + 1. So, for example, f 

is a function on the quotient surface. The cases k = 2, 3 can also be handled in 

this way. In fact, in the case k = 2 the map is given by A2/(,~ - 1), where A is 

the quotient of fourth powers discussed in the introduction. The case k = 3 is 

similar and will be discussed in §10. 

3. Characteristic classes 

We have defined in the introduction the space of characteristic classes as the 

quotient of R 2 by a group of rigid motions. A convenient fundamental domain 

for this group action is 

{(x,y) E R2; x > O ,  y>Oandx+y<2}U{(O,y) ER2; O<_y _~1} 

U{(x, 0) ER2; 0 < x  _< l} U {(x, 2 - x) Ea2;  0 < x < l } .  

Another convenient fundamental domain (which will hereafter be denoted by P)  

for this group action is 

((z,y) ER2; 0 < x < l ,  0 < y < 2 )  U{(0,y)ER2;0_<y _<1) 
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U{(z,O) ER.2; O < z  <_ I} U {(1, y) ER2; O<y <1}.  

Fix an odd prime k. We are interested in characteristic classes represented by 

vectors of the form r m/k ] with m and m' odd integers. We eliminate from our 
t , , , ' /kJ 

list the (equivalence class of the) characteristic [~] (since the corresponding theta 

constant vanishes identically and this characteristic is invariant under the entire 

modular group). Up to equivalence there are (k s - 1)/2 such characteristics. We 

may choose as representatives for these classes, the characteristics 

[~1, ,[~1, 
[+] [~1 1 ' ' " '  1 ' 

[~ , , [ ? 1  
[i], ,[?], 

[~ ],[ ~ ], ,[ ++~ ], 
k~_.__z2 

[#1,[#], ,[~], 
. . . . . . .  . ° o  

[~], 

[i], 

[2+_, ],[ ~_, ], ,[ ~ ] 
In terms of the second fundamental region 7> described above the first row of the 

above list are characteristics on the vertical line z = 1 and the remaining rows 

are on the horizontal lines y = 1, y = 1 / k ,  y = 3 / k ,  . . . ,  y = (k  - 2 ) / k ,  y = 

(k  + 2 ) / k ,  . . . ,  y = (2k - 1) /k .  They also have the following interesting and 

important  algebraic interpretation: The first row is the set of representatives of 

those characteristic classes which are invariant (kept fixed) under the element B 

of F (see §5). The second row is the image of the first row under the map A and 

the collection of elements in the subsequent rows are the images of the second 

row under the group generated by the motion B. As a mat ter  of fact, this group 

permutes the columns of the array obtained by excluding the first row of the 

above table. 
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It  is easy to obtain another useful array by rearranging the one described above. 

As usual for z E R U {oo}, let F ,  denote the stabilizer of z in P. (This group is 

infinite cyclic for rational z and trivial otherwise.) Then our new array consists, 

as above, of k + 1 rows (each with (k - 1)/2 elements). The first row consists of 

those characteristic classes that  are fixed pointwise by Foo; while the elements in 

the j - t h  row are fixed by F j-2 for j = 2 . . . .  , k + 1. We call this array the list 

of  characteristic classes. 

PROPOSITION 1: The  action of the unimodular  matr ices  on characterist ics de- 

lines a group action of r on characterist ic classes. 

Proof." The result is known (see, for example, Chapter  I I I  of [4]). A proof 

is included for the convenience of the reader. We write the (afllne) action of 

7 E SL(2, Z) on the characteristic v E R 2 as a linear transformation followed by 

a translation 

v7 = 7% + T-/. 

usual 7 t is the transpose of the matrix 7 and for 7 = [:  ~] with a d -  bc (As 1, 

T7 = [ -~c].)  We first show that  the class of v7 depends only on the class of the 

characteristic v and the M6bius transformation determined by the matr ix  7. We 

note that  for all real e and d, we have 

[ +21 [a] 
d 7 = d 7 + 2 b ' 

d + 2  7 =  d 7 + 2  d ' 

] 
bd ' 

and 
_~C ] 

v ( - 7 )  = - v 7  + 2 bd " 

We show next that  we have a group action of PSL(2, Z) on characteristic classes. 

For 71 and 72 in SL(2, Z), we have 

= (7172)'v + 

and 

= = ^f271U . 
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Thus to have a (right) group action it suffices to show that 

T-r,-r, - (7~T-t, + T~2 ) E 2Z 2. 

Writing 

al a2 and 72 = 
71 -- a3 a4 b3 b4 

we need to study the difference between 

Isr. J. Math. 

- (a lb l  -4- a2b3)(aabl 4- a4b3) ] 
(alb2 + a264)(a362 + a ,b , )  

= [-(ala3b~+ala4blb34-a2a3blb34-a2a4b~) ] 
ala3b~ -4- ala4b2b4 + a2a362b4 4- a2a4b~ 

and 

bl b3 - a l a3  + = 
b2 b4 a2a4 b2b4 -ala3b2 + a2a4b4 + b2b4 

We will show that the last two characteristics differ by twice an integral charac- 

teristic. Since signs are irrelevant mod 2, it suffices to show that 

ala3bl 4- a2a4b3 4- bib3 = ala3b~ 4- ala4blb3 + a2a3blba 4- a2a4b~ (mod 2) 

and 

ala3b2 + a2a464 + b264 = ala3b~ 4- ala4b2b4 4- a2aab2b4 4- a2a4b24 (mod 2). 

But 

ala3b~ + ala4blb3 + a2a3blb3 4- a2a4b23 = ala3b~ 4- b, b3(a, a4 + a2a3) + a2a4b~ 

- ala~b~ + blba(ala4 - a2a3) -4- a2a4b] (mod 2) = alaab~ 4- blba 4- a2a4b 2. 

We are hence reduced to showing that 

ala3bl 4- a2a4b3 - alazb~ 4- a2a4b] (mod 2) 

This last equation is obvious since 

(1 - b,) +  2a463(1 - b3) 

is the sum of two even integers. Similarly, for the second entries of our theta 

characteristics. II 

Remark 1: The above proof relies extensively on the fact that we are dealing 

with matrices in SL(2, 7.) and does not work for matrices in SL(2, R). | 
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4. Characterist ics  and p u n c t u r e s  

In this section we give a procedure for identifying certain sets of characteristic 

classes with the punctures on H2/ r (k ) .  

Definition 1: For the (positive) odd prime k we let 

- 1  

The matr ix  Ak E 

interpreted for characteristic classes): Let n E Z. For k = 41 + 1, 

[ Ak = ,_~,1~ n 

and for k = 41 + 3, 

SL(2, Z) has the following property (equalities are to be 

only when (k2--~)s is congruent to ±1 rood 2k for k = 41 + 1 and when (k~___.!1)~ is 

congruent to ±1 rood 2k for k = 41 + 3. 

We identify the puncture determined by oo with the characteristic class of 
P 

J k * J 

the orbit consists of (k - 1)/2 elements then we have obtained the first row of 

the list of characteristic classes. Under the same circumstances, the orbit under 

< Ak > of the puncture determined by oo is the first row of the list of punctures. 

There is thus an obvious pairing between the first rows of the two lists. Since 

the generators of r provide us a with way of obtaining the subsequent rows from 

1 1 

and for k = 41 + 3, 

for every positive integer s. It therefore follows that  

1 1 

['] 
n / k  . 

In particular,  it follows that  for k = 41 + 1, 
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the first one, it is clear that we may obtain a bijection between the two lists. 

while it is true that the orbit of /l~k~ under < As > can not Unfortunately, 
L s J 

contain more than (k - 1)/2 elements, it can contain fewer elements. The first 

occurrence of this phenomenon is for k = 17. We will not pursue this interesting 

number theoretic question here but will observe that it really does not affect 

our correspondence between punctures and characteristics. In fact, the above 

is a very nice way of obtaining the correspondence; but if all we wish to do is 

establish a correspondence, we can proceed in a different way exploiting the fact 

that each puncture on H2/1"(k) is the projection to this surface of an image of c¢ 

under some element of 1". We will need some preliminaries which are developed 

in the next section. 

5. The  h o m o m o r p h i s m  from 1"/1"(k) to S.{k) 

5.1 INVARIANT CHARACTERISTIC CLASSES. In §3, we have shown that the ac- 

tion of the unimodular matrices on characteristics defines a group action of 1" on 

the characteristic classes. Fix a prime k. We now show that the action defined 

gives rise to a representation of 1"/1"(k) as a subgroup of ,-%,(k), the permutation 

group on n(k) elements. For this purpose, for k > 2, let us denote by X(k)  

the finite set of (k 2 - 1)/2 characteristics discussed in the beginning of §3 (thus 

consists of classes represented by characteristics ] m,/~ ] with m and m' odd 
P 

X(k)  
I .  J 

integers (not both equal to a multiple of k). We let X(2) denote the three even 

integral theta characteristics. 

LEMMA 1: The set X(k)  is invariant under the action of 1" on characteristic 

cla~qses. 

Proof." The proof for k = 2 is well known and straight forward; hence left to 

the reader. So assume that k is an odd prime. The image of [ ,,,/k ] under the tm'/kJ 
r action of _[: d ~ ]_ E 1" is [ ~b,~%,,,'~ +bd J" This characteristic (it obviously is not the 

class of [11] ) represents a class in X(k)  as long as not both a and c are even and 

not both b and d are even (the excluded cases are impossible since they would 

contradict the fact that ad - bc = 1). | 

Proposition 1 and the above lemma now allow us to define a homomorphism 

7/ of F into S,,(~) by sending the motion 7 E F to the permutation of the set 
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X(k)  that it induces. For 7 E P, the permutation 77(7) sends the class of the 

characteristic X to the class of the characteristic XT. 

We show now that the kernel of this homomorphism is r (k) .  Again, we treat 

only the case k > 2. Consider an arbitrary element of our space of characteristics 

x = [ m'/k ] 
m/k 

with m and rn ~ odd. The image of this characteristic under the motion 

[ k r + l  ks 1 kt ku+l er(k) 

is the characteristic 

m / k + m r  + m ' t -  kt(kr + 1) ] 
ml/k + ms + mlu + ks(ku + 1) J " 

This characteristic is equivalent to X provided mr+m' t - k t ( k r+ l )  and ms+re'u+ 

ks(ku+l)  are even integers. This fails to happen only if r is odd and t is even or u 

is odd and s is even in which cases we contradict that (kr + 1)(ku + 1) - k2st = 1. 

The above argument shows that F(k) is contained in the kernel of the homo- 

morphism r/. We show next that if 7 E r is not an element of F(k), then there is 

a characteristic which is not fixed by it. As usual, let 

[ab] 7 =  c d 

and assume that  b is not congruent to zero mod k. Then we see that the (class 

of the)character is t ic  ]l~k / is not fixed by 7- Similarly, if c is not congruent to 

zero mod k, then the characteristic [1)k ] i s  not fixed by 7. It thus follows that 
L J 

we may assume that b and c are congruent to zero mod k. It follows that ad is 

congruent to one rood k. Consider now the characteristic [ l/k] It is mapped by 
Ll/kj " 

[l+ m] some integers m n) can equivalent to preimage 7 to ~ + . j  (for BAld which be its 

only when a and d are both congruent to either +1 rood k. This means that 7 is 

in r(k). 
We thus have a well defined monomorphism 

r/r(k) 
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R e m a r k  2: If, as usual, we represent elements of F /P(k)  by M6bius transforma- 

tions (read from right to left) and elements of S,(k) as permutations (read from 

left to right) of the first n(k )  natural numbers, then ~/is an antihomomrphism 

since for all 71 and 75 in F 

0(71 i 

LEMMA 2: Let 

X = ~l E 

represent  a characterist ic class. Then  X is f ixed by  Foo i f  and only  i f  ~ is an odd 

integer  and so w i thou t  loss o f  general i ty  we may assume e = 1 (hence 0 < d < 1 

is arbi trary)  or ~ is an even integer which we may take as e = 0 and in this case 

2" 

Proof." The group too is generated by the motion B: z ~ z + 1. Since 

~ + d + l  ' 

the if part  of the lemma is trivial. For the converse, without loss of generality 

0 _< ~ _< 1 and 0 _< d <_ 2. Assume first that ~ = 0. Thus we may assume 

0 _< ~' _< 1. We are assuming that the characteristic [~,] is equivalent to the 

0 [. Since 0 < d < the only is that  d - 1 characteristic e+l  _ _ 1, possibility - g. 

Assume next that 0 < ~ _< 1. We conclude in this case that [2,] is equivalent to 
J 

P 

l 
t e+~'+11 " 

5.2 T H E  C O R R E S P O N D E N C E  B E T W E E N  P U N C T U R E S  AND C H A R A C T E R I S T I C  

CLASSES ( C O N C L U S I O N ) .  As before, we identify the puncture determined by 

co with the characteristic class of 

1 

For each "y E F, we identify the puncture corresponding to 7-1(co)  with the 

characteristic class of ~t~t ~7. This is a characteristic class in X(k)  as a result of 
f 

k * J 

Lemma 1. We need to show that our correspondence is well defined and injective. 

These facts follow from our claim that for all elements "/I and 72 of r ,  

Xo71 -- Xo72 if and only if 7i-~(co) = 7~-~(co) mod F(k). 
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This last claim is reduced to showing that for 3" E F, 

Xo3" =- Xo if and only if 7 - ' ( o 0 )  = oo mod F(k). 

Let 3' E F fix the characteristic class of Xo. Write, as usual, 

c d 

From 

[Ilia b] [1] 1 C d = b-[.- d - ~ b d  ~- 1 

we see that c is congruent to 0 rood k and d is congruent to +1 mod k. If c = 0, 

then 3, -1 fixes oo. If c # 0, then 3"-1(oo) = - d / c  is not equal but is F(k)- 

equivalent to oo. The converse is easily established; that is, if 3,-1(oo) is F(k)- 

equivalent to oo, then the theta characteristics X0 and Xo3" are equivalent. Since 

X ( k )  and the set of punctures on H 2/F(k) have the same cardinality ((k 2 - 1)/2), 

our correspondence is also surjective. 

5 . 3  T H E  ACTION OF I ~ ON CLASSES AND P U N C T U R E S .  Let Z denote the map 

from characteristic classes to punctures defined above. If x E R U oo is a cusp 

for F(k) and 3' E F, then 3'(x) is another cusp for F(k). This defines the lef t  

permutation of the punctures of H2/F(k).  Similarly, the right permutation 
of the punctures is defined by sending x to 7-1(x).  In terms of these group 

actions the map 2; is defined by the relation (with 3' E F) 

Z(xo3") = 3 ' - ' ( o o )  = 3 " - ' ( Z ( x o ) ) .  

THEOREM 1: The image in Sn(k) o f r  under the homomorphism r I is isomorphic 

to the group of con[ormal self maps of H 2/r(k). The action of F on the charac- 

teristic classes X ( k ) corresponds to the right permutation of the punctures; that 

is, for each characteristic class X E X ( k )  and all 3" 6 r ,  we have 

z(x3') = 3 ' - ' ( z (x) ) .  

Proof: The image of the homomorplfism T/is isomorphic to F/I ' (k)  which is well 

known to be the group of conformal self maps of the Riemann surface H2/F(k).  

The remark concerning the permutation of the punctures is a consequence of our 

identification of the characteristics with the punctures via the map 2;; specifically, 
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the characteristic X is given as XoTo for some 7o E r.  Hence 

Z ( x ' r )  = Z((xo 'r°) ' r )  = (~o o ~ ) - ' ( Z ( X o ) )  

= -y- '  (.~;-' (Z (x ) ) )  = .~- '  (zCx.yo)) = .y- '  (Z(x)) .  

Isr. J.  Math.  

6. Strange combinatorics 

We have encountered in our work two interesting sets Pl and Q1 (we will redefine 
them below) that are in one to one (almost canonical) correspondence. We fix an 

odd prime k. The set Q1 is the quotient of vectors [~] with x and v relatively 

prime integers by the equivalence relation is equivalent to ~, if and only if 

X X I 

We define the set P~ as the quotient of vectors [~] withx and v odd integers by 

,he eq  ooco eqo  eo, [:;] =d 

z V' ] mod 2k. 

fL1 
The set ~D 1 is  obtained by deleting from ~o~ the equivalence class of ~ / "  We see  

L J 

no direct (combinatorial) reason for the two sets to have the same cardinality. 

7. Theta  constants 

7.1 PRELIMINARIES. In this section we define the theta functions and theta 
constants and list some of the properties we shall be using. For the convenience 
of the reader we shall in some cases provide proofs of results even though they 

are not new. General references for this section are Chapters I and II of [4] and 

Chapter VI of [1]. We begin with a 

Definition 2: The theta function with characteristic [~,] is defined by the 

following series which converges uniformly and absolutely on compact subsets of 

C x H2: 

0 [ ¢~ ] (z ,~-)= ~ezexp27rz ( ( 1 / 2 ) ( n +  2 ) 2 r +  ( n +  2 ) ( z +  d ) ) .  | 



Vol. 82, 1993 AUTOMORPHIC FORMS 105 

The theta functions satisfy the following properties: For m, n integers, 

More generally, for m, n arbitrary real numbers 

0 d + 2 '  
(2) (11 : }[ ] 

=exp2~r, -~raz-~m r- m(~'+n) 0 e+m 
e+n (z, 7-). 

In fact, a double application of this formula with n and m integers gives the 

previous formula because of the next identity. For m and n integers, 

e + 2n (z' 7-) = exp ~,{~}0 g (~,7-). 

Further, 

(4) O - d  (z,7-)----O d 

All of the above properties follow immediately from the definition of the theta 

function and the fact that  the defining series is absolutely convergent. These 

properties are the manifestation of the fact that there really is only one theta 

function [0]:, 
0 0 

and the theta functions with characteristic are expressed in terms of this function 

by the formula 

0 d (z, 7-)=exp27rz 1_~27 " +  1 d 8 ~ z +  ~' 0 z + ~ + r 2 , r  . 

The t h e t a  c o n s t a n t s  are defined by setting the variable z = 0 in the definition 

of the theta functions. We shall abbreviate 

when there can be no confusion. Formulae (3) and (4) show that the theta con- 

stants raised to the 2k power depends only on the class of the theta characteristic 

[ ' ,] provided ~ is rational of the form m/k with m E Z. 
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7.2 THE TRANSFORMATION FORMULA. A property of theta functions deeper 

than the previous identities and which is central to the development of this paper 

is contained in the next formula. For any characteristic 

and any dement  

['] X = el G R 2, 

lob] 
7 =  c d 

of SL(2, Z), we have 

(5) 
0 [a '+  " ' -at  ] 

be+d4 + ~  (z ,r )  

:.([: ] 

for all z E C, 7- E H ~, where ~ ([ ~, ], 7) is a constant depending on the charac- 

teristic [~,] and the matrix 7. We will show that 

oil) 
where the choice of sign depends both on the characteristic X and the matrix 7. 

THEOREM 2: Let 

X =  e' E and 7 =  c d ESL(2, Z). 

The theta constants satisfy the transformation rule 

['] [ 1 (7) 0 e' (0"r(r))=~(c~+d)'/20 a e + . ' - a c  (0,~), 
be + dg + bd 

for all r E H z, where ~ = n(X,7) is the constant depending on the characteristic 

X and the matrix 7 de/~ned by the above formula (6). 

Proof: We begin by establishing (5). Fix ~" and let g be the function defined 

by the left side of the equality. It is obviously a meromorphic function of z on 
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C. Our first task is to show that g is a doubly periodic function for the lattice 
generated by 1 and r. Towards this end we begin with an examination of the 
periodicity of the function 

z ~-+ O e' cr--4- d' cr + d ] " 

We write 

(s) 

and 

(9) 

1 a t +  b 
- - = a - c  
cr + d cr + d 

r - -  , b +  d a r  + b 

cr + d cr + d' 

and conclude from these trivial identities that 

[ e ] /z__+l a T + d )  
0 e' k, cr + d '  cr + 

and 

,. f ae + ce' z 
= exp z m  ~ ~ + c cr + d 2 c r + d J  0 

[ e ] /z__+r a r + b )  
0 e' k, c r + d ' c r +  

- b e -  de' d z 
= exp 2m 2 cr + d 

It is immediate that 

and 

d 2 a ' r + b }  [ e ] z a v + b .  
2 ~ ¥ d  0 ~, ( ~ - + d , ~ ¥ ~ ) .  

e x p m [  c r + d  = e x p m  c r + d  

exp m = exp m 
cr + d cr + d 

Finally 

c } 
cr + d exp m [ cr + d J 

cr2 } [ - c z 2 ~  
c r + d  e x p m [ c r + d j .  

be+de' +bd  be+de' +bd  (z,r) 

and 
O[ ae + ce' - ac 

I be + de' + bd 
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{ r be+de'+bd} [ a E + c e ' - a c ]  
=exp2~ ,  - z  ~ ~ 0 be+de '+b,~ (~'r)" 

It is easy to see that we have arranged our functions to have cancellation; that 

i s ,  

g(z + 1) = g(z) = g(z + r), all z E 12. 

The meromorphic function g has (at most) a single simple pole at a single point 

(in a period parallelogram). Hence it is a constant which depends on r, the 

characteristic [,; ] and the matrix 7. We fix for the moment the characteristic 

and matrix, and denote the constant (as a function of r)  by ~(r). To obtain the 

formula for s(r) ,  we rewrite our basic identity as 

- c z  ~ ~ e cr  = be + de' + bd ( z, r )  explrz c r + d j O  e' --Fd'-~r'+d] g(r)O a e + c d - a c  

and expand both sides in a power series (in z) about the origin. We begin with 

f --CZ2 ! 7fZCZ2 
exp , = - . + d 

~ + . . .  , 

e z ar+b~ (o, ar+b~ 

O' [ e ] (0, ""-x-+-!~ 
~t cl"+d ] 

+ z +  
cr +d 

et cT+d I 

2(cr + d) 2 

et er+d 
z2+ z3 + . . .  , 

6(cr + d) 3 

and 

be+de' +bd (z ,r)=O be+de' +bd be+de' +bd 

where the prime (') after the theta function denotes differentiation with respect 

to z. Equating coefficients of powers of z leads to (four equations that we need) 

0 e' O, c r + d ]  =~(r)O b e + d d + b d  

1 
cr + d o' e' O, c-'r-"~] = ~(r)O' be + de' + bd ' 



Vol. 82, 1993 A U T O M O R P H I C  FORMS 109 

1 0" ~ 2(or+d)2 [ d ] (o,a'c+b'~ 7r$c 0 (o, ar+b'~ 

= tc(r)O" [ a ( + c d - a c  ] b(+ dd + bd 

and 

1 /'0 a'r + b~ ~r$c O' O, 
6(or + d) 3 0"' d ~, ' cr + dJ (cr + d) 2 d cr + dJ 

- ~(--~)°'" [ a '  + ce  - ac ] (°' r ) ' 6  b( + de  + bd 

Dividing the third of the above equations by the first, we obtain 

(101 
,[,] 

~ (o,-y(~-)) o "~ + " '  - ~ (o,,-) 
0 d b~ + dd + bd 

Similarly, from the other two equations 

e (o,.~(r)) ~ ,  b, + d; + ba 
~'(~)_ _ _  + 

e (o,~(~)) o, ~ + " '  "~ (o,~) b~ + dd + ~ 

We now make use of the heat equation 

471"$ 
(gz 2 Or ' 

which is easily established using the series expansion of the 0-function involved. 

Differentiating the first of our four equations with respect to r and using the 

heat equation yields 

1 d (O,"},(r)) 
4zz (cr + d) 2 



110 H . M .  FARKAS AND I. K R A  Isr. J .  Math.  

(the prime (') denotes differentiation with respect to z for the 0-function (as 

before) and with respect to r for to). "Dividing by the first equation" results in 

e 
1 1 e' (0,7(r))  1 be + de' + bd to(r) 

e (0,7(r))  4rz ae -t- ce' - ac (0,~') 4 m ( c r + d )  2 O e' O be + de' + bd 

Combining this last equation with (10) leads to the ordinary differential equation 

~(~) c 
~,(~) 2(c~ + d) 

satisfied by our unknown function ~;. From which it easily follows that 

~(~ )=~o(c~+d)  1/2, 

where the constant too depends on the characteristic [ ~, ] and the matrix 7. 

It is a consequence of what we have already proved that 

,f - cz  2 a~ + b 
e ~ p ~ t c ~ + ~ } O [  0 

0 -ac  
tC([ O l ' 7 ) ( c r + d ) l / 2 0 [  bd ] ( z , r ) .  

Set 
ae + ce' be + de' 

z = ¢ + r  2 + - - 7 -  

with e, e' arbitrary real numbers and obtain 

exp~rz--c((q-ra~2-~q- ~ ' O ,7(~') 
CT q-d 0 c'r +d 

(11) 

We now note that from (2) it follows that 

bd ~ + w 2 - t - ~ , ~ "  

(12) 1 , l(ae+c¢,)(bd+be+&,)} = exp 2m { - ~(a¢+cc 1~ - l(a~+cd)2r8 - 

× o [ a~+" ' -a~ ] (~,r). 
be + dd + bd 
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From (2), using (8) and (9), we see that 

(13) 0 0 c r  + d 2 

(14) 

AUTOMORPHIC FORMS 

= 

exp2m -Sec-~-~  -ge cr +d ee' 0 e' ,r . 

From (11), using (12) and (14), we obtain a formula which has the form 

111 

([0]/ [ ] 
t~ 0 , 7  ( c r  + d) 1120 ae + cd  - ac be+de' +bd (~,r)E, 

with E = E(X,'y) a very complicated exponential expresion involving all the 

variables (depending on the characteristic X and the matrix 7) we have used. 

With a little bit of perseverance, however, one can simplify E to be 

exp 27rt { - 4  (ae + ce')bd- 8 (abe2 + cde'~ + 2bcee') } 

from which we obtain (6), our almost final formula for the constant to. There now 

only remains the problem of computing t¢ ([0], 7) for arbitrary 3' E SL(2,Z). We 

do this for our three favorite generators for the group of unimodular matrices: 

- I ,  A, and B. It is trivial to show that for all characteristics [ ~, ], 

It follows from the definition of the theta function that 

8 0 (0 ,B(T))=  _~_ccexp2rz{ ln2( r+ l )2  = exp2~rz ~n2-r+n/2  
n - -  t t ~ - - O Q  

(we have used in the penultimate of the above equalities the fact that for integers 

N, exp ~rzN depends only on the parity of N and hence we can replace exp mn 2 

by exp ran), so that 

0 
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We now treat the case of the motion A. Here we observe that r = , is a fixed 

point of the motion and since t¢ is independent of the point r we compute at that 

point. We have 

0 0] 
Since A(z) = t, we get ([o]) 

0 ,A = ~ .  

After some remarks on factors of automorphy, we will be able to derive in- 

formation about ~ ([0°],7) for arbitrary 7 E SL(2, Z), from the information we 

derived (the formula for this mysterious quantity for the generators - I ,  A, and 

B of SL(2, Z)) which will complete the proof of the theorem. | 

7.3 FACTORS OF AUTOMORPHY. Let G be a subgroup of SL(2,R). We are 

particularly interested in groups whose images in the MSbius group PSL(2, R) 

are Fuchsian. We restrict our attention to the action of the group G on ~ .  A 

f ac to r  o f  a u t o m o r p h y  for G is a nonvanishing function 

e: G × H 2 - ~  C* 

with 

holomorphic for all g E G and 

x 2 c"  

e(glg2,v)=e(gl,g2(r))e(g2,v) 

for all gl, 92 E G and all r E H 2. For 

g = [  a c 

the map 

b] 
d ' 

defines a factor of automorphy for SL(2, R). However (cr + d) 1/2 is not a factor 

of automorphy for (the smaller) group SL(2, Z) since it assigns either +v//, an 

8-th root of unity, to the pair ([° o l ] , ,  ). This is impossible s ince ,  is a fixed 

point of the motion determined by the matrix [~ o 1 ] which has order 4. 
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In general, for fixed characteristic X, powers of s(X, ") will define factors of 

automorphy for subgroups of SL(2, Z) that are independent of r.  In order to 

derive multiplicative properties of the functions ~, we must use quantities that  

depend only on characteristic classes. We start with the case 

[0] 
X =  0 " 

We write our basic identity (with m and rn ~ integers) as 

)-,e (o,-y(,-)) m '  ''~ (c"+d)O~ ~ m + c m ' - ~  (0,~'). 
brn + din' + bd 

In the above equation we can replace the charactristics by their classes and we 

conclude that 

~' ([ ~, l ,"") --~' ([ ~, l,'~) ~' ([ °'~+~'~m + ~,~, + ~,~, l,,,)-°'~' 
for all 

71 = cl dl c2 d2 

in SL(2, Z) and all integers m, m'. We conclude from the above identity and (6) 

that 

~,([Oo],,,,,)_-~,([Oo l,,,)~,([:J,,,) 
(15) x exp 27rz{ - i ~(--alcla2 + bldlca)b2d2 

¼ ( a~ c~ a2b2 + b~ ~ c2d2 - 2al b, cl d, b2d2 ) }. 

The above formula and the fact that i¢ ([0°], 7) is an 8-th root of unity for 7 = 

- I ,  A, and B allow us to conclude (because - I ,  A, and B generate SL(2, Z)) 

that  t¢ ([0], 7) is an 8-th root of unity for all 7 E SL(2,Z). 

([m/~1) Our next claim is that ~ \ Lm,/k j , 7 is an 8k-th root of unity for every motion 

7 in the preimage in SL(2, Z) of F(k), for all primes k and all integers m and ra'. 

Also, for integral characteristics [m ~, ], ~ ([ ~, ], 7) is an 8-th root of unity for all 

7 E SL(2, Z). Both of these claims follow directly from (6) and (15). 

Remark 3: We need to distinguish formulae that are valid for theta charac- 

teristics from those that only hold for characteristic classes. In this regard, we 
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observe that (6) and (7) are identities for characteristics while (15) is true only 

on the level of characteristic classes (which sometimes makes it difficult to apply 

(7) on the level of theta characteristics). Many of the formulae involving motions 

7 E PSL(2, Z) depend on the choice of matrix in SL(2, Z) that represents the 

motion. | 

8 .  A u t o m o r p h i c  f o r m s  

The theta constants (as functions of r )  yield automorphic forms (actually cusp 

forms) for the groups F(k). For details about automorphic forms see Chapter 

III of [3]. For q E Z, q >_ 2, we let Aq(H2,F(k)) denote the space of q-cusp 

forms (supported on H 2) for the group F(k). We restrict our attention to the 

ease where k is an odd prime and q = 2k. It follows from Riemann-Roch that 

dimA2,(H~, F(k)) = (2q - 1 ) ( p -  1) + (q - 1)n = (k2 - 1)(4k2 - k - 6) 
• 24 

For the characteristic 

we define 

T H E O R E M  3:  

['] 
X = et , 

qo et : T ~-~ et 

For a fixed prime k > 2, the complex valued function 

[ ' ]  ~, ~ A2k(H2,r(k)),  

provided the characteristic is of the form [ m/k ] with m and m' odd integers. [m'/kj 

This cusp form depends only on the class of the characteristic [ talk ] 
[ , , , ' / k J "  

[ m/k  1 Proo£" The function ~[m'/kj is holomorphic and nonzero on H 2. Since the 

theta constant is raised to the 8k-th power (actually for this statement 2k-th 

power suffices), the resulting function depends not on the theta characteristic, 

but  only on its class. Since ~(X, 7) is an 8k-th root of unity for all 7 E r(k)* 

* Technically we should say " for all 7 in tile preimage of F(k) in SL(2,Z)." This 
abuse of language should not cause any confusion. 
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and the characteristic class determined by [ m/k ] is fixed by r(k), ~ [ ~/k ] is an Lm'lkJ [,,, Ik] 
automorphic form for the group r(k). It remains to show that this function is a 

[m/k ] extends to H 2 UQu{oo} and cusp form. We will do so by showing that ~ Lm,/k j 
examining the projection to (H ~ U Q u { o0 }) / F(k) of the divisor of this extension. 

We compute 

0 ~ ( O , r ) = E e x p 2 m  ( 1 / 2 ) ( n + ~ - ~ ) r + ( n + ~ - ~ ) ~ - ~  
T nEZ 

(2~rzv. m . 2 k ~  ( m . m " l  
=Eexp - - - ~ - - ( n + g )  ~exp 7rz(n+~-~)--~-~ 

nEZ 

= ( T +  T +  s-r exp { frz(n + ~--~)--ff- ~ ,  E kn 2 n,n m ~ D2 . ~ t  

n E Z  

where ~ = exp{2mr/k}. Since both k and m are odd, it follows that kn2/2 + 

nm/2 is an integer. Further for all n E ~, kn2/2 + nm/2  is positive except for n 

in the closed interval [-re~k, 0]. We conclude that we may rewrite our sum as 

o (0, 1 --g- 

,~, f Tr,mm"~ 17rz(m-2k)m' ¢~-'~ + ~_. c.C 
= ¢-~- exp L 2k2 J + exp L fk¢ 

->~ 

for 1 <  m <  k - l a n d  

o (0,,) 
--£- 

= (  ~-~k2 exp 2k 2 j ~, 2k 2 + ~ , 

for k < m < 2k - 1. In each case, the constants cn are (in principle) computable. 

For k = m the last sum simplifies to 

[1 / 0 1, ( O , r ) = ¢  ' /s  exp ~ j + e x p  I 2k J + E c " ¢ "  " 
T ._>k / 

The two constants in the last equation add to zero if and only if k = m ~. In 

what follows we use the notion of reduced order. The definition of reduced order 
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(for a meromorphic automorphic form) is to be found in Chapter III of [3]. We 

conclude that 

red ord** ~o ~ = m 2 - 2k,  
-t-" 

i f l < m < k - 1  and 

[-] red ordoo ~o roT,, = ( m  - 2 k )  2 - 2k,  

i f  k < m _< 2k - 1. For  k = m,  we have 

red ordoo ~o m' = 
-'F 

(which is the limiting case of the two previous formulae) provided m' # k. (For 

m' = k, the theta constant (this is a function of y!) vanishes identically.) 

If ~ is a meromorphic automorphic q-form for r defined on I~  and C is a 

Mfbius transformation fixing IP,  then 

( 1 6 )  ,1, = = o c)(c'), 

is a meromorphic automorphic q-form for C - z F C  also defined on H 2 and 

red ordz ~b = red ordc(z) ~o 

for all z E It z U {parabolic fixed points of C - q ' C } .  For the forms under consid- 

eration we have 

1 be + de' + bd j 

r edordz~  e' ") ~ be + de' + bd ' 

for all z E t l  2 UQU {oo}. Similar statements hold for the value and Fourier series 

expansions at zoo for the forms under consideration. 

We are now ready to prove that 

[ 'l  
-t- 
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Since the automorphie form ~p [~,] is regular on n 2, we need only examine its 

behaviour at the cusps. If z E R U {oo} is a parabolic fixed point of F(k), there 

exists a C E SL(2,Z) with C -a ( z )  = oo. It follows that 

red ordx ~ "-£'~ = red ord~ --~ 

' (Similar transformation rules hold for some pair of odd integers ml and m 1 . 

for the Fourier series expansions of the automorphic forms 7~ [ --~ ].) It then also 
follows that 

red ord~ ~ ~,, _> 1 - 2k 

which shows that ~ is a 2k-cusp form. | 

Remark  4: Formml  even, the function ~0[,,~,] is not an automorphic form for 

element of the group. However it still makes sense to compute the Fourier series 
expansions (valid for r E It ~ with large imaginary part) of the various theta 

functions. We will need 

~exp ~rz 2-~- ~ "4- o(1) --£- 

f o r 0 < m <  k, 

and 

[ ] ( ( m ' }  ) 1, (k/s r ~  , 0 m (0, r)  = 2cos + o(1) 
T 

for k < m < 2k. I 

Remark  5: The case k = 2 is known to the experts. Arguments similar to the 

ones used above show that 

[0] 
red ord~ q0 ra' = - 4  

[ ]  ( {  ) --£- 
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for rn I = 0 or 1, and 

red ord~, q0 0 

In this case for m and m '  = 0 or I with m m  ~ = 0, ~ [m ~, ] is a holomorphie 4-form 

(but not a cusp form) for I'(2). As a mat ter  of fact, if we set ~ = exp{mT),  then 

we have for m '  = 0 or 1, 

0 ] (O,r) = Z ('~exp{~rzm'n) 0 m~ 
nEZ 

and 

= 1 + (-1)" '2¢ + 0(¢ 4) 

1 ] (O,v) = ¢1/4 E ~'''+" = 2~1/4(1 + ¢2 + O((:e)), 
0 0 ,,ez 

as well as the expansions given in the previous remark for fractional characteris- 

tics. II 

9. k = 2  

For the arbi trary positive prime k, we consider the projection 

p :  H 2 ._, H2/F(k)  

and its extension to Q o {co}. The image of this extended map  is closed. For 

x ~ H 2 W Q w {oo}, we will often write ez  for P(x ) .  

The case k = 2 differs from the other cases because 2 is the (only) even prime. 

Using the definition of characteristic classes given in section 3, we now consider 
F mn 1 the characteristic classes represented by vectors of the form [m'12 J with m and 

m ~ even integers. This set consists of the four classical integer characteristics. 

If we delete from this list the characteristic [11] , we have the set of three even 

characteristics. If we now consider as well all vectors of the form Lm,/2 j with 

m and m t arbi t rary integers, we add six additional classes to our list. This was 

already described in the introduction. We already explained there how we can 

obtain a homomorphism from r onto $3. A similar argument to the one given in 

section 6 which we shall not repeat shows that  the kernel of the homomorphism is 

precisely F(2). The group r (2)  acts nontrivially on the six additional classes and 

as we have described in the introduction, gives us a homomorphism of r (2)  onto 

the Klein 4-group. It is easy to check that  the kernel of this homomorphism is 
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I'(4), so that I'(2)/I'(4) is just the Klein 4-group. More importantly for us though 

is the fact that the action of r(2) on the six fractional classes has precisely three 

distinct orbits and each one can be associated in a natural way with one of the 

three even integral characteristics. The "natural way" is via the action of I?, 
which also acts on the orbits. This gives us the correspondence mentioned in the 

introduction. 

THEOREM 4: We have the following proportiondities among theta constants: 

The proof of this theorem requires some well known results concerning theta 

functions which we shall state without proof. Before we actually do this however, 

let us observe that what we have here is a statement about modular forms for 

the group I'(2). The statement is that each of the quotients is a modular 3-form 

for I'(2) and that the three quotients define the same form. 

The main tool in the proof of the above theorem is the well known addition for- 

mula for theta constants and some easily proven facts about them. The addition 

formula (for theta constants) we state is actually true also for theta functions as 

well as in the higher genus case. 

LEMMA 3: For d l  characteristics [:,I, [:I and d T E 8, we have 

Zn particular, we have 

Proof: See the appendix to Chapter I1 of [4]. 1 
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and 

Our final formulae are a consequence of the general addition formula noted 

above. They are: 

0 ] (0, 2r), 

o 1 ½ ] (0,2r), 

and 

Putting all this together yields the proportionality between the fourth powers of 

the classical theta constants (integer characteristic) and the products of theta 

constants with half integer characteristics. We have arrived at some identities 

among theta constants. 

COROLLARY 1: We have 

Proof: The proportionality and the classical identity among the fourth powers 

of the classical theta constants yields the above. | 

Remark 6: The methods of the next section era1 yield alternate proofs of the 

proportionalities established in this section. | 

10. k = 3  

It is well known that ~ / r ( 3 )  is a four times punctured sphere; the punctures 

are the images of the parabolic fixed points -1,  0, 1, oo under the extension to 

the parabolic fixed points of the group I'(3) of the canonical projection I'I 2 

H2/1'(3); we denote these puncturess by P- l ,  P0, P1 m~d Poo, respectively. 
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Recall that SL(2,Z) is the normalizer of r(3) as well as equation (16). For 
C E SL(2, Z), we have that ~b is a q-form for r(3), whenever ~ is. Taking 

c=[o -,] 
1 0 ' 

we see that 

([ '1) [~] c ; ~ ,  = ~ , ,  

with e a root of unity, and hence 

['] ['l re~or~ i =~o~=~=~ i = - ~ .  

Similarly (using C = [-~o 1 ] and C : [_1 ~] ), we see that 

red°rdlq°[ ! ] =red°rdooq°[ I ] = - 5 g l  

and 
~ ]=redordoo~[ 1 

I/3 of the projection = [I/sJ from which it follows that the divisor ~ I/s 

~0 [i/31 (to li~/r(3)) is given by 
L1mJ 

p 5 p 5 p 5  " 
~ 0 ~ l ~ o o  

Similarly 
(°[~}/ " 

1 = p s  p s p 5  , 
- - 1  1 ~ 

([']) 
~- iD5 ]D5D5 

and 

I - ps psps" 
--10 1 

It now makes sense to form the ratios 

1 

g and ['] ['1 9~ g ~ g 
1 1 
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and observe that these are automorphic functions for the group F(3) whose pro- 

jections to H 2/F(3) have divisors 

p_s ps 
* and 

P0' 

respectively. It follows that eighth roots (A and g) of these functions provide 

covering maps of I~/F(3) (for us there are obvious roots to choose; namely, 

ratios of cubes of theta constants). We have therefore proven the following 

THEOREM 5: The maps 

[,] [1] 
r ~  ~ and r ~  

are holomorphic universal covering maps from H 2 to the four times punctured 

sphere H 2/F(3). 

Remark 7: Up to choice of signs, the ratios of the third powers of the theta 

constants that appear in the above theorem depend only on the characteristic 

classes (not the theta characteristics themselves). It is also easy to conclude 

directly from (7) and (6) that up to sign, the above ratios are automorphic func- 

tions on }[2 for F(k). The elimination of the ambiguities in signs (the fact that 

we have single rather than multivalued functions) follows from the nature of the 

singularities that our functions have and the simple connectivity of the compact- 

ification of ~ / F ( 3 ) .  The choice of the two characteristics is quite arbitrary. Any 

choice of two out of the four will give a covering map. | 

Now any two covering maps that are automorphic with respect to the same 

group are post-related by a conformal map (MSbius transformationin our case); 

thus 

g=CoA, 

with C 6 PSL(2, C). It remains to evaluate C. 

Evaluting the last equation at P0, we see that C fixes oo. Thus there are 

constants a # 0 and/9 such that 
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It is easiest to proceed by translating this equation to one involving theta con- 

stants: 

By equating leading terms of the Fourier series expansions of these functions we 

see that 

Thus we conclude that 

and 

e3[il(0) 

c ~ = - 1  and f l = l .  

l = A + g  

g 

We have therefore proven one half of the following 

THEOREM 6: For a11 points ~" in H 2 the following two identities hold: 

and 

Proof: 

similar. 

1 1 oxp(~,/3)03 [ i ] (0 ~)+exp(2~,/3)031 i ] (0 ~)=03[~ 1(0~) 
The first identity has been derived above; the proof of the second one is 

| 

Remark  8: A similar argument establishes the well known classical identity 

among the three theta constants with even (integer) characteristic: 

0,[0 ]+ [0] 0 ] = 0 4 [  01 0 4 1 

See the end of [1] for a more standard proof. | 

Till now we have been concentrating on the four characteristic classes which 

are fixed pointwise by F(3). Representatives for these can be taken to be 

[~][~][~ ~ ' 1 ' 1 
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As in the introduction we shall label these characteristics by the integers 

l 1 

We recall the generators B and A of the modular group. In the usual notation 

of permutations, 7/(B), the permutation induced by B is (1 3)(1 2) and r/(A) = 

(1 3)(2 4). These two even permutations generate the alternating group on four 

elements, ,44. We have thus shown (this is well known) that r/r(3) is isomo~pmc 

to ,44. As a matter  of fact, 

r/(B) = (1 3)(1 2), r/(A) = (I 3)(2 4), ~(B 2) = (I 2)(1 3), 71(BOA) -- (2 3)(2 4), 

7/(A o B) = (1 2)(1 4), ~/(B 2 o A) = (1 4)(1 2), ~/(A o B o A) = (1 4)(1 3), 

TI(BoAoB 2) = (1 2)(3 4), ,](B 2 oAoB)  = (1 4)(2 3), 

T/(A o B 2) = (2 4)(2 3), and T/(A o B 2 o A) = (1 3)(1 4). 

We have already seen that we have identities among the third powers of the four 

theta constants with characteristics in the above list. We now show how to use 

these identities to obtain .,44 as a group of fractional linear transformations, and, 

more importantly, to obtain a modular invariant which generalizes the classical 

)~ function. To simplify notation, we let 

[ ~ ] = O , ,  

provided we have identified the characteristic [~,] with the integer (index) i. 

Here i ranges over the integers 1, 2, 3, and 4. In this notation (after some trivial 

substitutions), the identities we have derived are: 

(17) 

and 

(18) 

o33 = o23 - 0~ 

e~ = : e ~  + o, ~, 

where e : exp Irz/3. Recall the definition 

8~" r E 

We have already seen that this function provides us with a conformal homeo- 

morhism of ~ / r ( 3 )  on a four times punctured sphere. One easily computes 
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the punctures to be 0, 1, e s, and oo. We know that F/F(3) is isomorphic to 

Aut(H~/P(3)), the group of conformal automorphisms of the Riemann surface 

H2/F(3). As a mater of fact we have a surjective homomorphism 

II: r --,  A u t ( H a / r ( 3 ) )  

with kernel r(3) defined by 

,~ o 7 = 11(7)  o ~. 

For k = 2, 3, and 5, H2/F(k) is a punctured sphere and hence Aut(n2/r(k)) is 
a group of MSbius transformations. We proceed to describe the homomorphism 

11 for the case k = 3. 

As already remarked, the group F operates (on the right) on the function A 

by substitution. Since the action of F(3) is trivial, we actually have an action 

of F/F(3) on A. We choose (in the table below) a set of representatives for the 

nontrivial cosets of r / r ( a )  and use (7) and (6) to obtain 

03 =*°~ A) +:o~ 4 -Oss AoA 5__3 A o f B  2) A o ( B o  = 
o B = _ o~' = ±~ o~' - o~' o33' 

o 3 o~ 
A o (A o B) = :t:e4-20~, A o (B '  o A) = +e 5 O--~' 

03 0 3 
s 2 A o ( B 2 o A o B ) = . O ~  A o ( A o B  o A ) = :i:e4 --4-40a~ ' A o ( B o A o B , )  = :t:e 0-'~1' - 0~ ' 

~ o ( A o B 2 ) = *  °~ and ~o(aoB2o,tl=±~OA 
- 02' o ~  

We need to eliminate the ambiguous signs and to express the right hand sides 

of the above equations in terms of A. We use the identities among the cubes of 

the theta constants (17) and (18), the fact that 1I(7 ) has finite order for all 7 E P 

(hence the trace of each of these fractional linear transformations lies in the open 

real interval ( -2 ,  2)), and (when needed) the fact that the M6bius transformation 

II(7 ) permutes the four points in {0% 0, 1, es}. We compute 

A - 1 A - 1 1 esA 
A o B -  A ' A o A -  e A - l '  A ° ( B 2 ) -  1 - A '  A o ( B o A ) -  A - I '  

e eA - 1 
A o ( A o B ) -  ~ + ~ ,  " ' "  ~ ' ~ , o ~ 2 o . ~ j =  ~)~ , 
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A o ( A o B o A ) = I - e A ,  A o ( B o A o B 2 ) = - ~ ,  A o ( B 2 o A o B )  - 
A + e  2 

A - I '  

eA 
A ° ( A ° B 2 ) - e A - I '  and A o ( A o B 2 o A ) = e s ( 1 - A ) .  

The above list produces 11 holomorphic functions on H 2. We label them 

{fl ,  . . . ,  f n } .  We label the "identity function" r ~ A(r) by f12. We form for 

n = l ,  2, 3, . . .  
12 

i=1 

THEOREM 7: The elementary symmetric functions (more generally any symmet- 

ric polynomial) of the 12 fimctions defined above are invariant under the modtdar 

group. In particular, 

~o] : 4(1 - e2), 

and 

~2 ---- - -4e  2, 

~o. = 3 (A(A - 1)(eAe - 1) ( A -  1)(cA- 1) cA(cA- 1) A(A.--. 1) '~ 
- A s + ( A - l ) "  ( c A - l ) " /  

is a nontrivial modular function with a simple pole at ,oo (in fact ~s is a branched 

holomorphic universal cover of the orbifold I~ /F and defines a 12 sheeted cover 

of X e / r  by 1t2/r(3)). 

Proof." Note that )t is invariant under F(k) and 

~ " =  E A " o 7  
r(k)\r 

is invariant under r .  Calculations yield the formulae for the sums of the first 

three powers of A. The proof of the other assertions is routine. We are averaging 

a function of degree three on H2/F(3) with respect to the group 1"/1"(3) of order 

12. One expects a function of degree 36. Clearly, we have some cancelation. 
| 

Remark 9: The function which sends r E H 2 to 

A+AoB+AoB 2_As-3A+I 
A(A - I )  
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is automorphic for the group G =<  F(3), B >. This defines a three sheeted 

cover of H'~/G by [~/r(3). This fact opens up a series problems that we will 

investigate in future papers. | 

We finally turn our attention to the "complementary set" (consisting of classes 
[ . / 3 1  represented by nonintegral characteristics of the form [m,/3j with not both m 

and rn t odd) of twelve characteristics represented by 

1 

1 
1 2 2 

The group F(3) is generated by the motions 

z -2z  - 3 4z - 3 
T2:z~-*3z+l , T~:z~'-~ 3 z + 4  ' T4:z~-*3z-2' 

and T4 o T2 o T3 = TI: z ~-, z + 3. It acts on the above characteristic classes (by 

permutation). This defines a homomorphism from F(3) to $12. It can be shown 

that F(6) is the kernel of this homomorphism. 

The permutation induced by T2 is (2 12)(3 11)(4 10)(5 9) while the permutation 

induced by T3 is (1 12)(3 7)(4 6)(5 8). It is not necessary to find the permutation 

induced by T4 since T3 o T4-1: z ~ ( 1 3 z -  18)/(-18z + 25) E F(6), T4 will 

induce the same permutation as T3. The above permutations induced by T2 

and T3 generate a subgroup G of order 6 of ,-q12 (the image of F(3) under the 

homomorphism). 

If we denote by Y, the space of 12 characteristic classes in our list, then 

Y/G = {a = [1,1,12,12,2,2], b = [3,11,7,11,7,3], 

c = [4, 10,6, 10,4,6], d =  [5, 9, S, 9, S, 5]} 

has four elements and F acts on Y/G. We check the action of F on these four 

elements. We easily find that B induces the permutation (d c)(d b) and that 

and that A induces the permutation (a b)(c d). If we now compare this with the 

action of F on the four (fractional) characteristic classes fixed pointwise by F(3), 

we find that we should associate 

the characteristic class of [11 ] with the orbit [1, 1, 2, 2, 12,12], 
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the characteristic class of 

the characteristic class °f [ ~ ] s  

and 
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with the orbit [5,5,8,8,9,9], 

with the orbit [4,10,6,10,4,6], 

the characteristic class °f [ ~ ] with the °rbit [3'3'7'7'11'11]" 1 
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The above arguments suggest the following theorem which gives a set of pro- 

portionalities with a different flavor than the ones obtained for k = 2. 

THEOREM 8: The quotient of any two of the following products is a constant on 

the upper half plane: 

o[o ,  1o[olo[ ], O[o 1 g 

o[ ! lo [ i ]o [ ! ] ,  
Proof: We consider the 24-th powers of the above products. Each is a mul- 

tiplicative (associated to some character (homomorphism of r(3) into the unit 

circle)) automorphic 18-form, say ~. The ratio of two of these is hence a multi- 

plicative automorphic function f for the group r(3). The singularities and zeros 

of the projection F of f to I'~/F(3) are at the punctures. The form ~o has reduced 

order - 9  at each of the punctures. The (multivalued) multiplicative function F 

is hence regular at the punctures (thus the character associated with F must be 

trivial). We conclude that F is a (single valued) holomorphic function on the 

compactification of Hz/r(3) and hence constant. 1 

11. k = 5  

We would now like to repeat as much of the above discussion for the group F(5). 

As a maximal set of inequivalent parabolic fixed points for this group, we may 

take the following 12 points: 

{-2, -3 /2 ,  -1 ,  -1 /2 ,  c~, 0, 2/5,1/2,1, 3/2, 2, 5/2}. 

Calculations (using Mathematica) show, for example, that 

q, ~ = • -1- s/2 
p 9  p 9 p p ,  D 9  D . v . p 9  v 9  v " 

co 0 1 2 . f _ 2 - ~ 1 / 2  .L 5 /2  _ 1 / 2  -L _ 3 / 2  "L 2 /5  
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Similar formulae hold for the other 11 characteristics. 

Fifth powers of ratios of theta constants give us meromorphic functions of 

either degree 7 or degree 5 on the 12-punctured sphere ~ / F ( 5 ) .  The divisors of 

these degree 5 functions are supported at the precisely 10 of the 12 punctures. 

Each of these has 5 simple zeros and 5 simple poles. We illustrate with 

PI P~ P1/~ Ps /2 P~ /5 

g 

Let us call the function produced above f .  Observe that f is regular and nonzero 

at the two punctures P-1 and Psi2. Riemann-Hurwitz tells us that f has total 

branch number 8. Let us denote f (P- l )  by wl aaad f(Ps/2) by w2. Simple 

calculations show that 

0s[111 051117 
c°s5 1-6 

wl = - - ( 0 ,  zoo) - s,~ and w2 - - - ( 0 ,  too) = ~ 
7~ 

c°s5 1--6 

c°s5 1--6 

and that the branch numbers of f at P-1 and Ps/2 must be _> 4. It follows that 

the branch number of f at each of these punctures is precisely four and that f is 

unbranched elsewhere. Hence a fifth root g of 

f ~  tO 1 

f - -  0) 2 

is a holomorphic universal covering map of the 12-punctured sphere It2/F(5) with 

a simple zero at - 1  and a simple pole 3/2. By considering several degree 5 maps, 

one can once again produce relations among theta constants. 

We have therefore proven most of 

THEOREM 9: The 5 single va/ued functions ((f-w1)/(f-w2))1/5 are holomorphic 

universa/coverings of the Riemann surface S = H 2/F(5). Moreover, there exist 

complex numbers ws ~ w4 such that the functions 

i 

g 
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are also holomorphic universal coverings of S by H 2 and their fifth powers defines 

a degree 5 map of  S onto the 4-punctured sphere given as the quotient of S by 

the automorphism of this surface induced by B. 

Proof'. The first statement has been proved before the statement of the theorem. 

The proof of the second statement follows as does the first after one checks the 

respective divisors of the functions. The last statement is also an immediate 

consequence of the structure of the divisors. | 

Remark 10: Instead of the fifth powers of the last function, we could use 

0511~5](O,w)/OS[3~5](O,T)" m 

12. Concluding remarks 

In this paper we have at tempted to generalize what we consider as the classical 

theory (the k = 2 case) to the principal congruence subgroups of the modular 

group of odd prime level. We have concentrated on explicitly writing formulae 

for covering maps which generalize the classical A function of the k = 2 theory. 

We have also at tempted to lay the foundation for further work we intend to do 

which will generalize the section on k = 2 of this paper and the result we obtained 

in the section on k = 3. We have omitted some very interesting connections of 

this theory to the theory of partitions and Ramanujan congruences. We hope in 

a subsequent publication to discuss many of the things that time did not permit 

us to do here. 
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